当前位置: 首页 > 技术随笔 > Java nio入门教程详解(三)

Java nio入门教程详解(三)

1.4 I/O概念

Java 平台提供了一整套I/O隐喻,其抽象程度各有不同。然而,离冰冷的现实越远,要想搞清楚来龙去脉就越难——不管使用哪一种抽象,情况都是如此。JDK 1.4 的 NIO 软件包引入了一套新的抽象用于I/O处理。与以往不同的是,新的抽象把重点放在了如何缩短抽象与现实之间的距离上面。NIO 抽象与现实中存在的实体有着非常真实直接的交互关系。要想最大限度地满足 Java 应用程序的密集 I/O 需求,理解这些新的抽象,以及与其发生交互作用的 I/O 服务(其重要性并不亚于抽象),正是关键所在。

这里假定您熟知基本的 I/O 概念,因此,本节将快速回顾一些基本概念,为下一步论述新的NIO类如何运作奠定基础。NIO类模拟I/O函数,因此,必须掌握操作系统层面的处理细节,才能理解新的 I/O 模型。

在阅读的过程中,理解以下概念是非常重要的:

  • 缓冲区操作
  • 内核空间与用户空间
  • 虚拟内存
  • 分页技术
  • 面向文件的 I/O 和流 I/O
  • 多工 I/O(就绪性选择)

1.4.1 缓冲区操作

缓冲区,以及缓冲区如何工作,是所有 I/O 的基础。所谓「输入/输出」讲的无非就是把数据移进或移出缓冲区。

进程执行 I/O 操作,归结起来,也就是向操作系统发出请求,让它要么把缓冲区里的数据排干(写),要么用数据把缓冲区填满(读)。进程使用这一机制处理所有数据进出操作。操作系统内部处理这一任务的机制,其复杂程度可能超乎想像,但就概念而言,却非常直白易懂。图 1-1 简单描述了数据从外部磁盘向运行中的进程的内存区域移动的过程。进程使用read()系统调用,要求其缓冲区被填满。内核随即向磁盘控制硬件发出命令,要求其从磁盘读取数据。磁盘控制器把数据直接写入内核内存缓冲区,这一步通过 DMA 完成,无需主CPU协助。一旦磁盘控制器把缓冲区装满,内核即把数据从内核空间的临时缓冲区拷贝到进程执行read()调用时指定的缓冲区。

图 1-1. I/O 缓冲区操作简图图 1-1. I/O 缓冲区操作简图

图中明显忽略了很多细节,仅显示了涉及到的基本步骤。

注意图中用户空间和内核空间的概念。用户空间是常规进程所在区域。JVM 就是常规进程,驻守于用户空间。用户空间是非特权区域:比如,在该区域执行的代码就不能直接访问硬件设备。内核空间是操作系统所在区域。内核代码有特别的权力:它能与设备控制器通讯,控制着用户区域进程的运行状态,等等。最重要的是,所有 I/O 都直接(如这里所述)或间接(见 1.4.2 小节)通过内核空间。当进程请求 I/O 操作的时候,它执行一个系统调用(有时称为陷阱)将控制权移交给内核。C/C++程序员所熟知的底层函数open()read()write()close()要做的无非就是建立和执行适当的系统调用。当内核以这种方式被调用,它随即采取任何必要步骤,找到进程所需数据,并把数据传送到用户空间内的指定缓冲区。内核试图对数据进行高速缓存或预读取,因此进程所需数据可能已经在内核空间里了。如果是这样,该数据只需简单地拷贝出来即可。如果数据不在内核空间,则进程被挂起,内核着手把数据读进内存。

看了图 1-1,您可能会觉得,把数据从内核空间拷贝到用户空间似乎有些多余。为什么不直接让磁盘控制器把数据送到用户空间的缓冲区呢?这样做有几个问题。首先,硬件通常不能直接访问用户空间。其次,像磁盘这样基于块存储的硬件设备操作的是固定大小的数据块,而用户进程请求的可能是任意大小的或非对齐的数据块。在数据往来于用户空间与存储设备的过程中,内核负责数据的分解、再组合工作,因此充当着中间人的角色。

1.4.1.1 发散/汇聚

许多操作系统能把组装/分解过程进行得更加高效。根据发散/汇聚的概念,进程只需一个系统调用,就能把一连串缓冲区地址传递给操作系统。然后,内核就可以顺序填充或排干多个缓冲区,读的时候就把数据发散到多个用户空间缓冲区,写的时候再从多个缓冲区把数据汇聚起来(图1-2)。

图 1-2. 三个缓冲区的发散读操作图 1-2. 三个缓冲区的发散读操作

这样用户进程就不必多次执行系统调用(那样做可能代价不菲),内核也可以优化数据的处理过程,因为它已掌握待传输数据的全部信息。如果系统配有多个 CPU,甚至可以同时填充或排干多个缓冲区。

1.4.2 虚拟内存

所有现代操作系统都使用虚拟内存。虚拟内存意为使用虚假(或虚拟)地址取代物理(硬件RAM)内存地址。这样做好处颇多,总结起来可分为两大类: 1. 一个以上的虚拟地址可指向同一个物理内存地址。 2. 虚拟内存空间可大于实际可用的硬件内存。

前一节提到,设备控制器不能通过 DMA 直接存储到用户空间,但通过利用上面提到的第一项,则可以达到相同效果。把内核空间地址与用户空间的虚拟地址映射到同一个物理地址,这样,DMA 硬件(只能访问物理内存地址)就可以填充对内核与用户空间进程同时可见的缓冲区(见图1-3)。

图 1-3. 内存空间多重映射图 1-3. 内存空间多重映射

这样真是太好了,省去了内核与用户空间的往来拷贝,但前提条件是,内核与用户缓冲区必须使用相同的页对齐,缓冲区的大小还必须是磁盘控制器块大小(以前的磁盘扇区一般为 512 字节,现在500GB以上的硬盘一般为4096字节)的倍数。操作系统把内存地址空间划分为页,即固定大小的字节组。内存页的大小总是磁盘块大小的倍数,通常为 2 次幂(这样可简化寻址操作)。典型的内存页为 1024、2048和4096 字节。虚拟和物理内存页的大小总是相同的。图 1-4 显示了来自多个虚拟地址的虚拟内存页是如何映射到物理内存的。

图 1-4. 内存页图 1-4. 内存页

1.4.3 内存页面调度

为了支持虚拟内存的第二个特性(寻址空间大于物理内存),就必须进行虚拟内存分页(经常称为交换,虽然真正的交换是在进程层面完成,而非页层面)。依照该方案,虚拟内存空间的页面能够继续存在于外部磁盘存储,这样就为物理内存中的其他虚拟页面腾出了空间。从本质上说,物理内存充当了分页区的高速缓存;而所谓分页区,即从物理内存置换出来,转而存储于磁盘上的内存页面。图 1-5 显示了分属于四个进程的虚拟页面,其中每个进程都有属于自己的虚拟内存空间。进程A有五个页面,其中两个装入内存,其余存储于磁盘。

图 1-5. 用于分页区高速缓存的物理内存图 1-5. 用于分页区高速缓存的物理内存

把内存页大小设定为磁盘块大小的倍数,这样内核就可直接向磁盘控制硬件发布命令,把内存页写入磁盘,在需要时再重新装入。结果是,所有磁盘I/O都在页层面完成。对于采用分页技术的现代操作系统而言,这也是数据在磁盘与物理内存之间往来的唯一方式。

现代 CPU 包含一个称为内存管理单元(MMU)的子系统,逻辑上位于CPU与物理内存之间。该设备包含虚拟地址向物理内存地址转换时所需映射信息。当CPU引用某内存地址时,MMU负责确定该地址所在页(往往通过对地址值进行移位或屏蔽位操作实现),并将虚拟页号转换为物理页号(这一步由硬件完成,速度极快)。如果当前不存在与该虚拟页形成有效映射的物理内存页,MMU 会向 CPU 提交一个页错误。

页错误随即产生一个陷阱(类似于系统调用),把控制权移交给内核,附带导致错误的虚拟地址信息,然后内核采取步骤验证页的有效性。内核会安排页面调入操作,把缺失的页内容读回物理内存。这往往导致别的页被移出物理内存,好给新来的页让地方。在这种情况下,如果待移出的页已经被碰过了(自创建或上次页面调入以来,内容已发生改变),还必须首先执行页面调出,把页内容拷贝到磁盘上的分页区。

如果所要求的地址不是有效的虚拟内存地址(不属于正在执行的进程的任何一个内存段),则该页不能通过验证,段错误随即产生。于是,控制权转交给内核的另一部分,通常导致的结果就是进程被强令关闭。

一旦出错的页通过了验证,MMU 随即更新,建立新的虚拟到物理的映射(如有必要,中断被移出页的映射),用户进程得以继续。造成页错误的用户进程对此不会有丝毫察觉,一切都在不知不觉中进行。

1.4.4 文件I/O

文件 I/O 属文件系统范畴,文件系统与磁盘迥然不同。磁盘把数据存在扇区上,通常一个扇区512(或4096)字节。磁盘属硬件设备,对何谓文件一无所知,它只是提供了一系列数据存取窗口。在这点上,磁盘扇区与内存页颇有相似之处:都是统一大小,都可作为大的数组被访问。文件系统是更高层次的抽象,是安排、解释磁盘(或其他随机存取块设备)数据的一种独特方式。您所写代码几乎无一例外地要与文件系统打交道,而不是直接与磁盘打交道。是文件系统定义了文件名、路径、文件、文件属性等抽象概念。前一节讲到,所有 I/O 都是通过请求页面调度完成的。您应该还记得,页面调度是非常底层的操作,仅发生于磁盘扇区与内存页之间的直接传输。而文件 I/O 则可以任意大小、任意定位。那么,底层的页面调度是如何转换为文件 I/O 的?

文件系统把一连串大小一致的数据块组织到一起。有些块存储元信息,如空闲块、目录、索引等的映射,有些包含文件数据。单个文件的元信息描述了哪些块包含文件数据、数据在哪里结束、最后一次更新是什么时候,等等。

当用户进程请求读取文件数据时,文件系统需要确定数据具体在磁盘什么位置,然后着手把相关磁盘扇区读进内存。老式的操作系统往往直接向磁盘驱动器发布命令,要求其读取所需磁盘扇区。而采用分页技术的现代操作系统则利用请求页面调度取得所需数据。

操作系统还有个页的概念,其大小或者与基本内存页一致,或者是其倍数。典型的操作系统页从2048到8192字节不等,且始终是基本内存页大小的倍数。

采用分页技术的操作系统执行 I/O 的全过程可总结为以下几步:

  • 确定请求的数据分布在文件系统的哪些页(磁盘扇区组)。磁盘上的文件内容和元数据可能跨越多个文件系统页,而且这些页可能也不连续。
  • 在内核空间分配足够数量的内存页,以容纳得到确定的文件系统页。
  • 在内存页与磁盘上的文件系统页之间建立映射。
  • 为每一个内存页产生页错误。
  • 虚拟内存系统俘获页错误,安排页面调入,从磁盘上读取页内容,使页有效。
  • 一旦页面调入操作完成,文件系统即对原始数据进行解析,取得所需文件内容或属性信息。

需要注意的是,这些文件系统数据也会同其他内存页一样得到高速缓存。对于随后发生的 I/O请求,文件数据的部分或全部可能仍旧位于物理内存当中,无需再从磁盘读取即可重复使用。大多数操作系统假设进程会继续读取文件剩余部分,因而会预读额外的文件系统页。如果内存争用情况不严重,这些文件系统页可能在相当长的时间内继续有效。这样的话,当稍后该文件又被相同或不同的进程再次打开,可能根本无需访问磁盘。这种情况您可能也碰到过:当重复执行类似的操作,如在几个文件中进行字符串检索,第二遍运行得似乎快多了。

类似的步骤在写文件数据时也会采用。这时,文件内容的改变(通过 write())将导致文件系统页变脏,随后通过页面调出,与磁盘上的文件内容保持同步。文件的创建方式是,先把文件映射到空闲文件系统页,在随后的写操作中,再将文件系统页刷新到磁盘。

1.4.4.1 内存映射文件

传统的文件 I/O 是通过用户进程发布read()write()系统调用来传输数据的。为了在内核空间的文件系统页与用户空间的内存区之间移动数据,一次以上的拷贝操作几乎总是免不了的。这是因为,在文件系统页与用户缓冲区之间往往没有一一对应关系。但是,还有一种大多数操作系统都支持的特殊类型的 I/O 操作,允许用户进程最大限度地利用面向页的系统I/O特性,并完全摒弃缓冲区拷贝。这就是内存映射I/O,如图 1-6 所示。

图 1-6. 用户内存到文件系统页的映射图 1-6. 用户内存到文件系统页的映射

内存映射 I/O 使用文件系统建立从用户空间直到可用文件系统页的虚拟内存映射。这样做有几个好处:

  • 用户进程把文件数据当作内存,所以无需发布read()write()系统调用。
  • 当用户进程碰触到映射内存空间,页错误会自动产生,从而将文件数据从磁盘读进内存。如果用户修改了映射内存空间,相关页会自动标记为脏,随后刷新到磁盘,文件得到更新。
  • 操作系统的虚拟内存子系统会对页进行智能高速缓存,自动根据系统负载进行内存管理。
  • 数据总是按页对齐的,无需执行缓冲区拷贝。
  • 大型文件使用映射,无需耗费大量内存,即可进行数据拷贝。

虚拟内存和磁盘I/O是紧密关联的,从很多方面看来,它们只是同一件事物的两面。在处理大量数据时,尤其要记得这一点。如果数据缓冲区是按页对齐的,且大小是内建页大小的倍数,那么,对大多数操作系统而言,其处理效率会大幅提升。

1.4.4.2 文件锁定

文件锁定机制允许一个进程阻止其他进程存取某文件,或限制其存取方式。通常的用途是控制共享信息的更新方式,或用于事务隔离。在控制多个实体并行访问共同资源方面,文件锁定是必不可少的。数据库等复杂应用严重信赖于文件锁定。

「文件锁定」从字面上看有锁定整个文件的意思(通常的确是那样),但锁定往往可以发生在更为细微的层面,锁定区域往往可以细致到单个字节。锁定与特定文件相关,开始于文件的某个特定字节地址,包含特定数量的连续字节。这对于协调多个进程互不影响地访问文件不同区域,是至关重要的。

文件锁定有两种方式:共享的和独占的。多个共享锁可同时对同一文件区域发生作用;独占锁则不同,它要求相关区域不能有其他锁定在起作用。

共享锁和独占锁的经典应用,是控制最初用于读取的共享文件的更新。某个进程要读取文件,会先取得该文件或该文件部分区域的共享锁。第二个希望读取相同文件区域的进程也会请求共享锁。两个进程可以并行读取,互不影响。但是,假如有第三个进程要更新该文件,它会请求独占锁。该进程会处于阻滞状态,直到既有锁定(共享的、独占的)全部解除。一旦给予独占锁,其他共享锁的读取进程会处于阻滞状态,直到独占锁解除。这样,更新进程可以更改文件,而其他读取进程不会因为文件的更改得到前后不一致的结果。图 1-7 和图 1-8 描述了这一过程。

图 1-7. 共享锁阻断独占锁请求图 1-7. 共享锁阻断独占锁请求

图 1-8. 独占锁阻断共享锁请求图 1-8. 独占锁阻断共享锁请求

文件锁有建议使用和强制使用之分。建议型文件锁会向提出请求的进程提供当前锁定信息,但操作系统并不要求一定这样做,而是由相关进程进行协调并关注锁定信息。多数 Unix 和类 Unix 操作系统使用建议型锁,有些也使用强制型锁或兼而有之。

强制型锁由操作系统或文件系统强行实施,不管进程对锁的存在知道与否,都会阻止其对文件锁定区域的访问。微软的操作系统往往使用的是强制型锁。假定所有文件锁均为建议型,并在访问共同资源的各个应用程序间使用一致的文件锁定,是明智之举,也是唯一可行的跨平台策略。依赖于强制文件锁定的应用程序,从根子上讲就是不可移植的。

1.4.5 流I/O

并非所有 I/O 都像前几节讲的是面向块的,也有流 I/O,其原理模仿了通道。I/O 字节流必须顺序存取,常见的例子有TTY(控制台)设备、打印机端口和网络连接。

流的传输一般(也不必然如此)比块设备慢,经常用于间歇性输入。多数操作系统允许把流置于非块模式,这样,进程可以查看流上是否有输入,即便当时没有也不影响它干别的。这样一种能力使得进程可以在有输入的时候进行处理,输入流闲置的时候执行其他功能。

比非块模式再进一步,就是就绪性选择。就绪性选择与非块模式类似(常常就是建立在非块模式之上),但是把查看流是否就绪的任务交给了操作系统。操作系统受命查看一系列流,并提醒进程哪些流已经就绪。这样,仅仅凭借操作系统返回的就绪信息,进程就可以使用相同代码和单一线程,实现多活动流的多路传输。这一技术广泛用于网络服务器领域,用来处理数量庞大的网络连接。就绪性选择在大容量缩放方面是必不可少的。

3 0
我们认为: 用户的主要目的,是为了获取有用的信息,而不是来点击广告的。因此本站将竭力做好内容,并将广告和内容进行分离,确保所有广告不会影响到用户的正常阅读体验。用户仅凭个人意愿和兴趣爱好点击广告。
我们坚信:只有给用户带来价值,用户才会给我们以回报。
CodePlayer技术交流群1CodePlayer技术交流群1

帮朋友打一个硬广告:

P2P网贷系统(Java版本) 新年低价大促销,多年P2P技术积累,系统功能完善(可按需定制,可支持第三方存管、银行存管),架构稳定灵活、性能优异、二次开发快速简单。 另可提供二次开发、安装部署、售后维护、安全培训等一条龙服务。

外行看热闹,内行看门道。可以自信地认为,在系统设计上,比市面上的晓风、迪蒙、方维、绿麻雀、国融信、金和盛等P2P系统要好。
深圳地区支持自带技术人员现场考察源代码、了解主要技术架构,货比三家,再决定是否购买。

也可推荐他人购买,一旦完全成交,推荐人可获得实际售价 10% 的返现。
有意向者,详情请 点击这里 联系,工作时间立即回复。